9,466 research outputs found

    Linear spin wave theory for single-Q incommensurate magnetic structures

    Get PDF
    Linear spin wave theory provides the leading term in the calculation of the excitation spectra of long-range ordered magnetic systems as a function of 1/S1/\sqrt{S}. This term is acquired using the Holstein-Primakoff approximation of the spin operator and valid for small δS\delta S fluctuations of the ordered moment. We propose an algorithm that allows magnetic ground states with general moment directions and single-Q incommensurate ordering wave vector using a local coordinate transformation for every spin and a rotating coordinate transformation for the incommensurability. Finally we show, how our model can determine the spin wave spectrum of the magnetic C-site langasites with incommensurate order.Comment: 12 pages, 3 figures, cite this paper if you use SpinW (http://www.psi.ch/spinw

    The duration distribution of Swift Gamma-Ray Bursts

    Get PDF
    Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze the duration distribution of 888 Swift BAT bursts observed before October 2015. Fitting three log-normal functions to the duration distribution of the bursts provides a better fit than two log-normal distributions, with 99.9999% significance. Similarly to earlier results, we found that a fourth component is not needed. The relative frequencies of the distribution of the groups are 8% for short, 35% for intermediate and 57% for long bursts which correspond to our previous results. We analyse the redshift distribution for the 269 GRBs of the 888 GRBs with known redshift. We find no evidence for the previously suggested difference between the long and intermediate GRBs' redshift distribution. The observed redshift distribution of the 20 short GRBs differs with high significance from the distributions of the other groups.Comment: accepte

    Thermally induced coherence in a Mott insulator of bosonic atoms

    Full text link
    Conventional wisdom is that increasing temperature causes quantum coherence to decrease. Using finite temperature perturbation theory and exact calculations for the strongly correlated bosonic Mott insulating state we show a practical counter-example that can be explored in optical lattice experiments: the short-range coherence of the Mott insulating phase can increase substantially with increasing temperature. We demonstrate that this phenomenon originates from thermally produced defects that can tunnel with ease. Since the near zero temperature coherence properties have been measured with high precision we expect these results to be verifiable in current experiments.Comment: 5 pages, 3 figure

    Hybrid A/D converter for 200 deg C operation

    Get PDF
    A 12 bit A/D converter was designed and developed which will operate at 200 C with .05 linearity, 1/accuracy, 350 WSec conversion time, and only 455 mW power consumption. This product also necessitated the development of a unique three metal system in which aluminum wire bonding is done utilizing aluminum bonding pads, gold wire bonding to all gold areas, and employment of a nickel interface between gold and aluminum connections. This system totally eliminates the formation of a intermetallics at the bonding interface which can lead to bond failure. This product represents an advancement in electronics as it proved the operation of integrated circuits at high temperature, as well as providing information about both the electrical and mechanical reliability of hybrid circuits at 200 C

    On the Azimuthal Stability of Shock Waves around Black Holes

    Full text link
    Analytical studies and numerical simulations of time dependent axially symmetric flows onto black holes have shown that it is possible to produce stationary shock waves with a stable position both for ideal inviscid and for moderately viscous accretion disks. We perform several two dimensional numerical simulations of accretion flows in the equatorial plane to study shock stability against non-axisymmetric azimuthal perturbations. We find a peculiar new result. A very small perturbation seems to produce an instability as it crosses the shock, but after some small oscillations, the shock wave suddenly transforms into an asymmetric closed pattern, and it stabilizes with a finite radial extent, despite the inflow and outflow boundary conditions are perfectly symmetric. The main characteristics of the final flow are: 1) The deformed shock rotates steadily without any damping. It is a permanent feature and the thermal energy content and the emitted energy vary periodically with time. 2) This behavior is also stable against further perturbations. 3) The average shock is still very strong and well defined, and its average radial distance is somewhat larger than that of the original axially symmetric circular shock. 4) Shocks obtained with larger angular momentum exhibit more frequencies and beating phenomena. 5) The oscillations occur in a wide range of parameters, so this new effect may have relevant observational consequences, like (quasi) periodic oscillations, for the accretion of matter onto black holes. Typical time scales for the periods are 0.01 and 1000 seconds for black holes with 10 and 1 million solar mass, respectively.Comment: 15 pages, 7 figures, accepted by the Astrophysical Journa

    The Twist of the Draped Interstellar Magnetic Field Ahead of the Heliopause: A Magnetic Reconnection Driven Rotational Discontinuity

    Full text link
    Based on the difference between the orientation of the interstellar BISMB_{ISM} and the solar magnetic fields, there was an expectation that the magnetic field direction would rotate dramatically across the heliopause (HP). However, the Voyager 1 spacecraft measured very little rotation across the HP. Previously we showed that the BISMB_{ISM} twists as it approaches the HP and acquires a strong T component (East-West). Here we establish that reconnection in the eastern flank of the heliosphere is responsible for the twist. On the eastern flank the solar magnetic field has twisted into the positive N direction and reconnects with the Southward pointing component of the BISMB_{ISM}. Reconnection drives a rotational discontinuity (RD) that twists the BISMB_{ISM} into the -T direction and propagates upstream in the interstellar medium towards the nose. The consequence is that the N component of BISMB_{ISM} is reduced in a finite width band upstream of the HP. Voyager 1 currently measures angles (δ=sin−1(BN/B)\delta=sin^{-1}(B_{N}/B)) close to solar values. We present MHD simulations to support this scenario, suppressing reconnection in the nose region while allowing it in the flanks, consistent with recent ideas about reconnection suppression from diamagnetic drifts. The jump in plasma β\beta (the plasma to magnetic pressure) across the nose of HP is much greater than in the flanks because the heliosheath β\beta is greater there than in the flanks. Large-scale reconnection is therefore suppressed in the nose but not at the flanks. Simulation data suggest that BISMB_{ISM} will return to its pristine value 10−15 AU10-15~AU past the HP.Comment: 19 pages, 5 figures, submitte
    • …
    corecore